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Abstract. In this paper, we introduce a non-uniform tolerance parameter (TP) strategy (the tolerance
parameter is characterized by the proportion between the unused capacity and the capacity of a vertex)
and study how the non-uniform TP strategy influences the response of scale-free (SF) networks to cascading
failures. Different from constant TP in previous work of Motter and Lai (ML), the TP in the proposed
strategy scales as a power-law function of vertex degree with an exponent b. The simulations show that
under low construction costs D, when b > 0 the tolerance of SF networks can be greatly improved, especially
at moderate values of b; When b < 0 the tolerance gets worse, compared with the case of constant TP
in the ML model. While for high D the tolerance declines slightly with the b, namely b < 0 is helpful to
the tolerance, and b > 0 is harmful. Because for smaller b the cascade of the network is mainly induced
by failures of most high-degree vertices; while for larger b, the cascade attributes to damage of most low-
degree vertices. Furthermore, we find that the non-uniform TP strategy can cause changes of the structure
and the load-degree correlation in the network after the cascade. These results might give insights for the
design of both network capacity to improve network robustness under limitation of small cost, and for the
design of strategies to defend cascading failures of networks.

PACS. 89.75.Hc Networks and genealogical trees – 89.75.Fb Structures and organization in complex
systems – 89.40.Bb Land transportation – 89.20.Hh World Wide Web, Internet

1 Introduction

Complex networks have attracted a great deal of atten-
tion as an important tool to describe various complex sys-
tems in nature and society. It has been disclosed by recent
studies that many networks are characterized by scale-free
networks where the fraction of vertices having k connec-
tions follows a power-law distribution, P (k) ∼ k−γ with
2 � γ � 3, such as the Internet and WWW networks [1,2].

The security of complex networks is one of the key
problems to guarantee networks in function. Cascading
failures, triggered by a small initial shock or attacks,
are common in most of real complex networks, such
as power grid (blackout), Internet (packet congestion or
server down), traffic and transportation system (vehicles
jams), and so forth [1–16]. A number of important as-
pects of cascading failures in complex networks have been
widely discussed in both artificially generated scale-free
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(SF) topologies and real world networks with scale-free
properties by static and dynamic approaches [3–17]. These
works pointed out that scale-free networks are fragile to
intentional attacks, since some nodes are much more im-
portant than others. It is important to understand how to
design networks preventing from failures and attacks.

Recently, a typical dynamical model developed by
Motter and Lai (ML) [8], incorporates dynamics of the
flow of physical quantities on the network. In the model,
each vertex is assigned a finite capacity, given as Ci =
(1 + αi)li, where the tolerance parameter (TP) αi = α is
constant, the initial load li of vertex i is defined as the
sum of the number of data packets passing through the
vertex when a unit data packet is transmitted between
each pair of vertices. The capacity Ci of vertex i is the
maximal load that the vertex can handle, and vertex i will
fail when its real load exceeds the capacity Ci. As known,
heterogeneity is an essential character of SF networks,
which is highly heterogeneous in connectivity patterns and
load distributions, decaying as power-law regimes. And
even in collapsed networks, degree distributions and load
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distributions are highly heterogeneous and follow power
laws [13]. Obviously, heterogeneously distributed load or
capacity is deeply related to not only the intrinsic dynam-
ics of packet flow, but also the size of cascade as the conse-
quence of the propagation of overload failures. Since loads
in the collapsed SF networks still distribute uniformly as
mentioned above, the tolerance might be related to the
distribution of TP. Instead of homogeneous TP in the ML
model, we expect that non-uniform TP strategies would
make the network more robust under limitation of a given
budget D (the given budget D is defined as the sum of all
vertices’ capacity). More recently, based on the ML model,
few studies about tolerance control and defense have been
reported. Motter [18] developed a costless strategy of de-
fense based on a selective further removal of nodes and
edges in SF networks. Hayashi et al. [19,20] introduced
a defense strategy based on emergent rewirings between
neighbors of the attacked node, and investigated the size
of cascade on SF networks with controllable correlations.
However, no publication is focused on the impact of the
non-uniform TP on the robustness of SF networks. In the
present study, we introduce a non-uniform tolerance pa-
rameter (TP) strategy in cascading failures, where the TP
αi is not uniform for all vertices but depends on degree ki,
and aim to analyze how the proposed strategy influences
the dynamical cascading process on scale-free networks,
in terms of the tolerance and the critical values. This may
offer some implications to reinforce and design networks.

2 The non-uniform tolerance parameter
strategy

Initially, assume one unit of physical quantities (data
packets or flows) is transmitted between each pair of ver-
tices along the shortest path. If there is more than one
shortest path, then data packets are evenly balanced on
them. When the network is attacked intentionally, the
highest loaded or degree vertex is destroyed or fails, the
shortest paths between each pair of remaining vertices are
changed, and then loads on these vertices are rearranged.
If the loads of some vertices surpass their capacities, these
vertices will overload and fail at the same time. After that,
the distribution of the shortest paths is changed, and sub-
sequent failures occur until no vertex fails again or all
remaining vertices are disconnected. In the previous ML
model, the tolerance parameter (TP) is defined as the pro-
portion that the capacity is beyond the initial load of a
vertex and a constant TP is used. As the given capacities
of vertices are limited by construction cost D, the dis-
tribution of the capacities is strongly correlated with the
size of collapsed network. In the other words, the distribu-
tion of TP would have vital impacts on the propagation
of failures. Since the rearranged loads of vertices are still
proportional to the power of their degrees, a general TP
strategy is considered, where the TP of a vertex i is de-
pendent on the degree, given as

αi = a (ki/kmax)
b (1)

where a and b is parameters, and kmax is the maximal
degree on the network. For b > 0 (b < 0), vertices with
higher (smaller) degrees have larger TP. When b = 0, the
case represents the uniform TP, equal to that of the ML
model. Here the capacity Ci of vertex i, which is related
to both its initial degree ki and its initial load li, given as

Ci = (1 + αi)li =
[
1 + a (ki/kmax)

b
]
li. (2)

3 Simulations and results

In our studies, we construct the scale-free networks ac-
cording to the Barabasi-Albert (BA) model [21]. Assume
the vertex with the heaviest load is removed from the net-
work and cascade failures happen. Let us investigate the
difference between the tolerance of SF networks under uni-
form TP α and non-uniform TP αi given by equation (1).
To compare with the uniform TP case, equivalent uniform
TP α is calculated as follows to guarantee the same allo-
cated budget D in the network under the two cases,

α =

N∑
i=1

αili

N∑
i=1

li

=

N∑
i=1

a(ki/kmax)bli

N∑
i=1

li

. (3)

Cascading failures can be measured conveniently by the
following ratio

G =
N ′

N
(4)

where N and N ′ are the numbers of vertices in the largest
connected component before and after the cascade, respec-
tively. The network maintains its integrity if G ≈ 1, while
breakdown at a global scale occurs if G ≈ 0 [8,13].

In Figure 1a, we present the ratio G as a function of
b at the equivalent α = 0.05, 0.1, 0.2, 0.3, 0.4 (which is
calculated as Eq. (3)) on SF networks with γ = 3. To
make clear the distinct between the two cases, a relative
error ErrG of the G is defined as follows,

ErrG =
G(b) − G(0)

G(0)
(5)

where G(b) denotes the ratio G at b. The relative error
represents the relative amount that the size of the largest
connected component is improved, comparing with the
uniform case. A positive ErrG means that there is an im-
provement of the tolerance, and a negative value means
that a stronger damage occurs. The relative error for dif-
ferent b is displayed in Figure 1b. From Figures 1a, 1b,
we observe that the ratio G is a convex-shape function
of b, e.g. for α = 0.05, G grows from 0.02 at b = 0 to a
local maximal value about 0.2 at b = 0.5 (ten times in-
crement), and then starts to drop with b. It seems that
in small α (low budget D) adjusting b can observably en-
hance the tolerance of SF networks. Whereas for large
α, the amplitude of ErrG descends with the increase of b.
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Fig. 1. (a) The ratio G versus the parameter b at the equivalent uniform TP α = 0.05, 0.1, 0.2, 0.3, 0.4 on SF networks with
the exponent γ = 3.0. (b) The relative error of the ratio G versus the b. The ratio G versus the parameter b at the equivalent
uniform TP α = 0.1 (c) and α = 0.2 (d) on SF networks with different exponents γ = 2.2, 2.6, 3.0. In SF networks, the number
of vertices is 500, and the average links of each vertex is 4. The simulations are averaged for 50 realizations.

This indicates that benefit from the non-uniform TP strat-
egy will graduate away with α. The relationship between
G and b in SF networks with different exponents γ = 2.2,
γ = 2.6 (which are generated by the extended BA-model
in Ref. [22]) and γ = 3 are shown in Figures 1c, 1d. From
Figures 1c, 1d, it seems that the effects of the non-uniform
TP strategies are very similar for different exponents in
the range γ ∈ (2, 3]. Thus, the non-uniform TP strategy
has an important effect on the tolerance of SF networks,
and parameter b plays a key role in the effect.

To clarify the effect of the non-uniform TP strategy,
Figures 2a–2c and 3a–3c show degree distribution P ′(k)
after the failures and its normalized distribution P ′′(k) =
P ′(k)k−b for different b, respectively. The degree distribu-
tion approximates as a power-law regime P ′(k) ∼ k−γ1

with a scaling exponent γ1. The exponent γ1 has a de-
creasing tendency with b, and this is directly observed
in the overlapping curves of the normalized distribution.

These results suggest that for lower b, cascading failures of
the network can mainly ascribe to the breakdown of most
high-degree vertices. While for larger b, failures attribute
to the damage of most low-degree vertices. To make these
clear, Figures 4, 5 display variations of total number ra-
tio, number ratio at each time-step and average degree
of failed nodes with time step for α = 0.2 and α = 0.4.
Total number ratio of failed nodes is defined as the ratio
between the number of total failed nodes and the num-
ber of total nodes of the network. Number ratio of failed
nodes at each time-step is defined as the ratio between the
number of failed nodes at each time-step and the number
of total nodes of network. From Figure 4, it can be seen
that during the cascading process, with the increase of
b the number of failed nodes at each time step initially
increases, and then decreases gradually at the following
time-step. But during the whole process, average degree
of failed nodes always decreases with the increase of b.
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Fig. 2. The degree distribution for different α in a double logarithmic axis (a) α = 0.05, (b) α = 0.2, (c) α = 0.4, (d) the ratio
kmax/k′

max of the maximal degree before and after the removal versus the b.
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Fig. 3. The normalized degree distribution P ′′(k) for different α (a) α = 0.05, (b) α = 0.2, (c) α = 0.4.
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Fig. 4. The total number ratio (a), number ratio at each step (b) and average degree (c) of failures nodes vary with time step
for α = 0.2 on SF networks with the exponent γ = 3.0.
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Fig. 5. The total number ratio (a), number ratio at each step (b) and average degree (c) of failures nodes vary with time step
for α = 0.4 on SF networks with the exponent γ = 3.0.

This indicates that at start stage the speed of failures
for lower b is faster than that for larger b. Subsequently,
the opposite appears. However, in the whole more high-
degree vertices fail for lower b, while for larger b more
low-degree vertices fail. For lower b, highly connected ver-
tices have no enough capacities carrying the redistributed
load at first. And the increment of b will lead to the in-
creases of capacities in high-degree vertices, which make
some of high-degree vertices escaping from the failures.
Thus the number of high-degree vertices survived grows

with b. Since generally the load is proportional to the de-
gree, the amount of rearranged loads induced by failures
of high-degree vertices is dramatically reduced, and then
other high-degree vertices failing decrease further. The op-
posite proceeds for low-degree vertices. These differences
between high-degree and low-degree vertices are justified
by the conclusions drawn from Figures 6a–6c and 7a–
7c, where the correlation L(k), L′(k) between load and
degree before failures, after failures and its normalized
correlation L′′(k) = L′(k)k

b
20α for different b are shown.
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Fig. 6. The correlation between the load and the degree for different α. (a) α = 0.05, (b) α = 0.2, (c) α = 0.4, (d) the ratio
S/S′ of the total load before and after the removal versus the b.

10 100

0.01

0.1

1
(a)

 b=-0.2
 b=0
 b=0.2
 b=0.5
 b=0.8
 b=1.0

L
'' (k

)

Degree

10 100
0.01

0.1

1

(b)

 b=-0.2
 b=0
 b=0.2
 b=0.5
 b=0.8
 b=1.0

L
'' (k

)

Degree

10 100
0.01

0.1

1

(c)

 b=-0.2
 b=0
 b=0.2
 b=0.5
 b=0.8
 b=1.0

L
'' (k

)

Degree

Fig. 7. The normalized correlation L′′(k) for different α (a) α = 0.05, (b) α = 0.2, (c) α = 0.4.
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Fig. 8. The ratio G versus the equivalent uniform TP α on
SF networks with the exponent γ = 3.0.

It is observed that similar to the correlation L(k) before
failures, the correlation after failures follows a power-law
regime L′(k) ∼ kη1 with an exponent η1. The exponent η1
decreases with b. As b grows, high-degree vertices bear less
portion of the total load. At the same time, capacities in
high-degree vertices go up with b, thus less high-degree
vertices are destroyed during the failures, opposite to low-
degree vertices. These are in good agreement with our
conjecture. These findings just offer sufficient evidences
for the relationship between b and the tolerance shown
in Figure 1. For low α, the initial increase of b leads to
an increment of G, because the number of the low-degree
vertices failing is less than that of high-degree vertices
survived. After the local peak of G, a further increase of b
results in that overloaded low-degree vertices develop be-
yond high-degree vertices escaping from the failures. Then
the ratio G starts to drop with b. This also can be verified
by variation of total load in Figure 2d (the ratio of the
total load before and after the removal versus b) and the
maximal degree before and after the cascade in relation to
b for the network in Figure 6d. From Figure 5, it can be
obvious that the situation with large α is similar to that
with low α. During the cascading process the lower b is, the
more high-degree vertices fail, the less low-degree vertices
fail. Different from low α, with the increase of b the speed
of failures propagation becomes slow. Wholly the growth
of capacity for high-degree vertices is much faster than
that for low-degree vertices, resulting in more protection
of high-degree vertices and more damage of low-degree
vertices. Thus, when failures of low-degree vertices sur-
pass surviving high-degree vertices with α, the decrease of
b will be helpful to slightly enhance the robustness of low-
degree vertices and the tolerance of the network to some
extent. The simulations above indicate that non-uniform
TP strategy can no only bring improvements on the toler-
ance of the network, but also change the structure and the
load-degree correlation of SF networks after the failures.

The transition occurs in the ML model at a critical
value αc, below which the network will disintegrate com-
pletely. Here, we numerically investigate how the non-
uniform TP strategy affects the critical value of the equiv-

Fig. 9. The critical value αc versus the parameter b on SF
networks with γ = 3.0.

alent αc. Figure 8 displays the relationship between G
and α for different b on SF networks with γ = 3. Also
we can observe that transition phenomena occur in the
non-uniform TP case. The critical points change with b.
Figure 9 shows the equivalent critical value αc versus b.
Similar to the results in reference [13], the critical value
αc is about 0.1 for the uniform TP case (b = 0). In com-
parison with the uniform TP case (b = 0), the critical
value αc is reduced from αc = 0.1 at b = 0 to 0.024 at
b = 0.5, about four times. The improvement is strongly
dependent on b. The critical value αc decreases with the
increase of b at the beginning. With the further increase
of b, the critical value αc changes little. These numerical
results coincide with those numerical analysis obtained in
Figure 1. These findings show that the non-uniform TP
strategy can change the critical point of the transition
phenomena, and the critical value αc can be minimized
via adjusting b.

4 Conclusions

In summary, we have studied tolerance of SF networks
under the non-uniform tolerance parameter (TP) strat-
egy, where TP scales as vertex degree with an exponent b.
The simulation results indicate that the non-uniform TP
strategy has an important effect on the tolerance of SF
networks, and the tolerance can be obviously promoted by
adjusting b. The benefit from the non-uniform TP strat-
egy deceases with the increase of construction cost, which
is proportional to α. The variations of degree distribution
and correlation between load and degree are investigated
to find the mechanism of these effects. It is found that for
smaller b, the cascade of the network is mainly induced by
the failures of most high-degree vertices, while for larger b,
the cascade attributes to the damage of most low-degree
vertices. In addition, the non-uniform TP strategy in-
fluences not only the tolerance of the network, but also
the degree distribution and the load-degree correlation.
Our findings might be hopeful to both network capacity
designs and developments of network routing strategies
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to improve network tolerance. The impacts of the non-
uniform TP strategy in other topological networks are in
progress [23].
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